Ambrizzi T, Hoskins BJ, Hsu HH, 1995. Rossby Wave Propagation and Teleconnection Patterns in the Austral Winter. J Atmos Sci, 52:3661–3672. |
ALPERT, J. C.; KANAMITSU, M; CAPLAN, P. M.; SELA,J. G.; WHITE, G. H.; KALNAY, E. Mountain induced gravity wave drag parameterization in the NMC medium range forecast model. In: CONF. ON NUMERICAL WEATHER. PREDICTION, 8., 1988, Baltimore, MD. Proceedings. Baltmore: The Society, 1988. 726-733. |
Barbosa, H.; T. Tarasova, IFA Cavalcanti, 2008. Impacts of a New Solar Radiation Parameterization on the CPTEC AGCM Climatological model. Journal of Applied Meteorology, 47: 1377-1392. |
Bourke, W., 1972. An Efficient, One-Level, Primitive-Equation Spectral Model.Mon. Wea. Rev.,100, 683–689. |
BONATTI, J. P. Modelo de Circulação Geral Atmosférico do CPTEC. Climanálise Especial, edição comemorativa de 10 anos, 1996. |
Cavalcanti, IFA, 1991. Large Scale Disturbances in the Southern Hemisphere Tropospheric Circulation - Model Experiments Andanalyses of Observed Data. Tese. University of Reading, England, 1991. |
Cavalcanti, I.F.A., 2000. Teleconnection Patterns Orographically Induced in Model Results and from Observational Data in the Austral Winter of the Southern Hemisphere. Int. J. Climat., 20:1191-1206. |
Cavalcanti, IFA, J.A.Marengo, P.Satyamurty, C.A Nobre, I. Trosnikov, J.P Bonatti, A O. Manzi, T. Tarasova, L.P. Pezzi, C. D’Almeida, G. Sampaio, C.C. Castro, M. B. Sanches, H.Camargo, 2002. Global climatological features in a simulation using CPTEC/COLA AGCM. J.Climate, 15, 2965-2988. |
Cunningham, C., J.P. Bonatti, 2011. Local and remote responses to opposite Ross Sea ice anomalies:a numerical experiment with the CPTEC/INPE AGCM. Theor Appl Climatol. DOI 10.1007/s00704-011-0407-y |
Cunningham, C., J.P. Bonatti, M. Ferreira, 2014. Assessing improved CPTEC probabilistic forecasts on medium-range timescale. Meteorological Applications. DOI: 10.1002/met.1464. |
Davies, R., 1982: Documentation of the solar radiation parameterizations in the GLAS climate model. NASA Tech. Memo. 83961, 57 pp. |
Dommenget, D., and J. Floeter 2011:ConceptualUnderstanding of Climate Change with a Globally Resolved Energy Balance Model. Climate dynamics, 2011, 37, 2143-2165. |
Fraedrich,K., Kirk, E., Lunkeit F., 2005. Report 16-PUMA |
Fraedrich, K., E. Kirk, U. Luksch, and F. Lunkeit, 2005. The Portable University Model of the Atmosphere (PUMA): Storm Track Dynamics and Low Frequency Variability. Meteorol. Zeitschrift, 14, 735-745. |
FOLEY, J. A.; PRENTICE, C. I.; RAMANKUTTY, N.; LEVIS, S.; POLLARD, D.; SITCH, S.; HAXELTINE, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 4, p. 603-628, 1996. |
Gonçalves, L.J.M., 2015. Validação e Estimativa do Aquecimento Global Devido a uma Nova Parametrização da Emissividade da Atmosfera em Função das Forçantes Radiativas Gerada por Aumento dos Gases do Efeito Estufa Utilizando um Modelo Conceitual Global (GREB). TCC, Faculdade de Meteorologia, Universidade Federal do Pará. |
Grell, G. A.; D. Devenyi, 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29, 14, p. 1693. |
Grell, G. A., 1993. Prognostic evaluation of assumptions used by cumulus parameterization. Monthly Weather Review, 121, p. 764–787. |
Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994. A description of the Fifth generation Penn State/NCAR Mesoscale Model (MM5), NCAR TechNote TN-398 + STR, 122 pp. |
Harshvardhan, D. A. Randall, and T. G. Corsett, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92, 1009–1016. |
Hochstrasser, W., Orthogonal Polynomials, U.S. Department of Commerce, National Bureau of Standards, Applied Mathematics Series, 55, 1972. |
HOLTSLAG, A.A.M.; BOVILLE, B. A. Local versus nonlocal boundary-layer diffusion in a global climate model. Journal of Climate, 6, p. 1825-1842, 1992. |
Hoskins BJ, Karoly DJ, 1981. The Steady Linear Responses of a Spherical Atmosphere to Thermal and Orographic Forcing. J Atmos Sci 38:1179–1196. |
Hoskins BJ, Ambrizzi T, 1993. Rossby Wave Propagation on a Realistic Longitudinally Varying Flow. J Atmos Sci 50:1661–1671. |
Hou, Y. T., 1990: Cloud-radiation dynamics interaction. Ph.D. thesis, University of Maryland, 209 pp. |
Kiehl, J. T., J. J. Hack, and B. P. Briegleb, 1994: The simulated Earth radiation budget of the National Center for Atmospheric Research Community Climate Model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res., 99, 20 815–20 827. |
Kubota, P. Y., 2012. Variabilidade da energia armazenada na superfície e o seu impacto na definição do padrão de precipitação na América do Sul. 2012. 309 p. Tese (Doutorado em Meteorologia) - Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos. Disponível em: http://urlib.net/8JMKD3MGP7W/3CCP5R2 |
Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232–1240. |
LACIS A.; HANSEN, J. E. A parameterization of the absorption of solar radiation in the Earth's atmosphere. Journal Atmospheric Society, 31, p. 118-133, 1974. |
Marengo, J.A.; I.FA. Cavalcanti; P.Satyamurty, I. Troniskov; C.A. Nobre; J.P. Bonatti; H.Camargo; G.Sampaio; M.B. Sanches; A.O. Manzi; C.C. Castro; C.DÁlmeida; L.P. Pezzi; L. Candido. Assessment of regional seasonal rainfall predictability using the CPTEC/COLA atmospheric GCM. Climate Dynamics, 21, 459-475. |
Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875. |
Ramírez-Gutíerrez, E., P. L. Silva Dias, C. Raupp, and J. P. Bonatti, The family of anisotropically scaled equatorial waves, Journal of advances in modeling earth systems, 03, 2011. |
Rasch, P.J. and J. E. Kristjánsson, 1998: A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations. J. Climate, 11, 1587–1614. |
Rodrigues, D.A., I.F.A. Cavalcanti, 2006. Simulations of the Hydrologic Cycle over Southern South America using the CPTEC/COLA AGCM. Journal of Hydrometeorology, Vol. 7, No. 5, 916– 936. |
Sadourny, R.,1975. The Dynamics of Finite-Difference Models of the Shallow-Water Equations. J. Atmos. Sci.,32, 680–689. |
Slingo, J. M., 1987: The development of verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899–927. |
Tarasova, T. A., I. F. A. Cavalcanti, 2002: Monthly Mean Solar Radiative Fluxes and Cloud Forcing over South America in the Period of 1986–88: GCM Results and Satellite Derived Data. Journal of Applied Meteorology: Vol. 41, No. 8, 863–871. |
TARASOVA, T. A.; FIGUEROA, S. N.; BARBOSA, H. M. J. Incorporation of new solar radiation scheme into CPTEC GCM. Cachoeira Paulista - CPTEC: INPE, 2007. 44 p. (INPE-14052-NTC/371). |
TIEDTKE, M. The sensitivity of the time mean large scale flow to cumulus convection in the ECMWF model. In: WORKSHOP ON CONVECTION IN LARGE SCALE NUMERICAL MODELS. 1983, Reading. Proceedings… Reading: CMWF, 1983. P. 297-316. |
Trenberth, K. 1992. Climate System Modeling. Editor. Cambridge University Press. |
XUE, Y.; SELLERS, P. J.; Kinter, J. L.; Shukla., J. A simplified biosphere model for global climate studies. Journal of Climate, 4, p. 345-364, 1991. |